Όταν ο λόγος δύο ευθύγραμμων τμημάτων είναι ίσος με τον λόγο δύο άλλων τμημάτων, καλούνται αναλογικά τμήματα.
ΕΝΑ λόγος μεταξύ δύο τμημάτων προκύπτει διαιρώντας το μήκος του ενός με το άλλο.
δείτε περισσότερα
Μαθητές από το Ρίο ντε Τζανέιρο θα αγωνιστούν για μετάλλια στους Ολυμπιακούς…
Ανοιχτό για εγγραφές για τους Ολυμπιακούς Αγώνες το Μαθηματικό Ινστιτούτο…
Έτσι, δίνονται τέσσερα αναλογικά ευθύγραμμα τμήματα με μήκη ο, σι, w είναι ρε, με αυτή τη σειρά, έχουμε ένα ποσοστό:
Και, από τη θεμελιώδη ιδιότητα των αναλογιών, έχουμε .
Για να μάθετε περισσότερα, ρίξτε μια ματιά στο α λίστα ασκήσεων σε αναλογικά τμήματα, με όλες τις απορίες λυμένες!
Ερώτηση 1. Τα τμήματα είναι, με αυτή τη σειρά, αναλογικά τμήματα. Προσδιορίστε το μέτρο του Γνωρίζοντας ότι , είναι .
Ερώτηση 2. Καθορίσει Γνωρίζοντας ότι είναι αυτό:
Ερώτηση 3. Καθορίσει Γνωρίζοντας ότι είναι αυτό:
Ερώτηση 4. Προσδιορίστε τα μήκη των πλευρών ενός τριγώνου που έχει περίμετρο 52 μονάδες και του οποίου οι πλευρές είναι ανάλογες με τις πλευρές ενός άλλου τριγώνου με μήκη 2, 6 και 5.
Αν τα τμήματα είναι, με αυτή τη σειρά, αναλογικά τμήματα, τότε:
αντικαθιστώντας , είναι , Πρεπει να:
Εφαρμόζοντας τη θεμελιώδη ιδιότητα των αναλογιών:
Εχουμε:
αντικαθιστώντας , Πρεπει να:
Εφαρμόζοντας τη θεμελιώδη ιδιότητα των αναλογιών:
Εχουμε:
Οπως και , έπειτα, . Αντικαθιστώντας την παραπάνω έκφραση, έχουμε:
Εφαρμόζοντας τη θεμελιώδη ιδιότητα των αναλογιών:
Σύντομα .
Κάνοντας ένα αντιπροσωπευτικό σχέδιο, μπορούμε να το δούμε αυτό .
Εφόσον οι πλευρές των τριγώνων είναι ανάλογες, έχουμε:
Να εισαι ο λόγος της αναλογικότητας.
Επιπλέον, αν οι πλευρές είναι ανάλογες, το άθροισμά τους, δηλαδή οι περίμετροι, είναι επίσης:
Από τον λόγο της αναλογικότητας και τις γνωστές πλευρές παίρνουμε τα μέτρα των πλευρών του άλλου τριγώνου:
Για να κατεβάσετε αυτήν τη λίστα ασκήσεων για αναλογικά τμήματα σε PDF, κάντε κλικ εδώ!
Μπορεί επίσης να σας ενδιαφέρει: