Κλάσματαείναι πηλίκα μεταξύ δύο ολόκληροι αριθμοί και το διαίρεση των κλασμάτων Είναι μια βασική πράξη κατά την οποία διαιρείτε ένα κλάσμα με ένα άλλο κλάσμα ή με έναν ακέραιο αριθμό.
Για να διαιρέσετε τα κλάσματα, ακολουθήστε την ακόλουθη διαδικασία:
δείτε περισσότερα
Μαθητές από το Ρίο ντε Τζανέιρο θα αγωνιστούν για μετάλλια στους Ολυμπιακούς…
Ανοιχτό για εγγραφές για τους Ολυμπιακούς Αγώνες το Μαθηματικό Ινστιτούτο…
1º) Το πρώτο κλάσμα διατηρείται και οι όροι του δεύτερου αντιστρέφονται, δηλαδή αριθμητής και παρονομαστής αλλάζουν θέσεις.
2º) Αλλάξτε το σύμβολο της διαίρεσης με το σύμβολο του πολλαπλασιασμού.
3º) αποφασίζει να πολλαπλασιασμός μεταξύ κλασμάτων.
Τα αποτελέσματα της λειτουργίας μπορούν να απλοποιηθούν ή τεχνική ακύρωσης μπορεί να χρησιμοποιηθεί πριν τον υπολογισμό του πολλαπλασιασμού.
Δείτε παρακάτω για α λίστα ασκήσεων διαίρεσης κλασμάτων, όλα λύθηκαν βήμα-βήμα!
Ερώτηση 1. Υπολογίστε τις διαιρέσεις και απλοποιήστε:
Ο)
ΣΙ)
w)
Ερώτηση 2. Εκτελέστε τις πράξεις:
Ο)
ΣΙ)
w)
Ερώτηση 3. Λύσει:
Ερώτηση 4. Υπολογίζω:
Ερώτηση 5. Υπολογίστε και απλοποιήστε:
Ερώτηση 6. Υπολογίζω:
Ερώτηση 7. Υπολογίζω:
Ο)
Πρέπει να αντιστρέψουμε τους όρους του δεύτερου κλάσματος της πράξης και να αλλάξουμε το πρόσημο διαίρεσης για πρόσημο πολλαπλασιασμού:
ΣΙ)
Πρέπει να αντιστρέψουμε τους όρους του δεύτερου κλάσματος της πράξης και να αλλάξουμε το πρόσημο διαίρεσης για πρόσημο πολλαπλασιασμού:
w)
Ο αριθμός 10 είναι ο ίδιος με , οπότε όταν αναστρέφουμε γίνεται :
Ο)
Πρέπει να αντιστρέψουμε τους όρους του δεύτερου κλάσματος της πράξης και να αλλάξουμε το πρόσημο διαίρεσης για πρόσημο πολλαπλασιασμού:
ΣΙ)
Αρχικά, λύνουμε την πράξη πολλαπλασιασμού μεταξύ των παρενθέσεων. Στη συνέχεια υπολογίζουμε τη διαίρεση.
w)
Αρχικά, λύνουμε την πράξη διαίρεσης μεταξύ παρενθέσεων. Στη συνέχεια υπολογίζουμε τον πολλαπλασιασμό.
Για την επίλυση αριθμητικών παραστάσεων με κλάσματα, ακολουθούμε την ίδια σειρά εκτέλεσης πράξεων σε αριθμητικές παραστάσεις με ακέραιους αριθμούς.
Αρχικά, λύνουμε την πράξη μεταξύ παρενθέσεων:
Τώρα, δεν υπάρχουν άλλες παρενθέσεις. Λύνουμε τη διαίρεση:
Τέλος, λύνουμε την αφαίρεση:
Σε αυτή την πράξη, έχουμε μικτά κλάσματα, τα οποία σχηματίζονται από ένα ακέραιο και ένα κλασματικό μέρος.
Ας λύσουμε κάθε όρο ξεχωριστά μετατρέποντας το μικτό κλάσμα σε ακατάλληλο κλάσμα.
Άρα, πρέπει:
Το μόνο που μένει είναι να λυθεί η διαίρεση:
Κλάσμα είναι πηλίκο, δηλαδή διαίρεση του αριθμητή με τον παρονομαστή. Έτσι, μπορούμε να ξαναγράψουμε το παραπάνω κλάσμα ως εξής:
Τώρα, λύνουμε τη διαίρεση:
Αρχικά, λύνουμε τις πράξεις μεταξύ παρενθέσεων:
Επομένως:
Άρα, μένει μόνο να λυθεί η τελευταία διαίρεση:
Μπορούμε να ξαναγράψουμε το παραπάνω κλάσμα ως εξής:
Τώρα λύνουμε κάθε όρο ξεχωριστά:
Επομένως, πρέπει να λύσουμε την ακόλουθη διαίρεση:
Ας λύσουμε:
Σύντομα:
Μπορεί επίσης να σας ενδιαφέρει: