Education for all people
Kiinni
Valikko

Navigointi

  • 1 Vuosi
  • Viides Vuosi
  • Kirjallisuudet
  • Portugalin Kieli
  • Finnish
    • Russian
    • English
    • Arabic
    • Bulgarian
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Estonian
    • Finnish
    • French
    • Georgian
    • German
    • Greek
    • Hebrew
    • Hindi
    • Hungarian
    • Indonesian
    • Italian
    • Japanese
    • Korean
    • Latvian
    • Lithuanian
    • Norwegian
    • Polish
    • Romanian
    • Serbian
    • Slovak
    • Slovenian
    • Spanish
    • Swedish
    • Thai
    • Turkish
    • Ukrainian
    • Persian
Kiinni

Radikaalit yksinkertaistamisharjoitukset

Matematiikka

Katso lista ratkaistuista harjoituksista juuriominaisuuksien käyttämisestä radikaaleilla käytettyjen lausekkeiden yksinkertaistamiseksi!

Per Elainy MarcianoLähetetty sisään 08/09/2020 - 20:25
Jakaa

Monet matemaattiset lausekkeet ja yhtälöt sisältävät juurtuminen, joka on käänteisoperaatio tehostaminen.

Tällaisissa tilanteissa, jotta ongelmia voidaan käsitellä ja ratkaista helpommin, on tärkeää tuntea näiden kahden toiminnon ominaisuudet ja tehdä radikaalien yksinkertaistaminen.

Katso lisää

Rio de Janeiron opiskelijat kilpailevat mitaleista olympialaisissa…

Matematiikan instituutti on avoinna ilmoittautumista varten olympialaisiin…

katso a luettelo radikaaleista yksinkertaistamisharjoituksista, kaikki resoluutiolla, jotta voit tarkistaa vastauksesi ja oppia lisää tästä aiheesta!

Luettelo radikaaleista yksinkertaistamisharjoituksista


Kysymys 1. Yksinkertaista radikaaleja poistamalla mahdolliset tekijät:

The) \dpi{120} \sqrt{3\cdot 2^3\cdot 5^5}

B) \dpi{120} \sqrt[3]{8\cdot 3^6\cdot 7^4}

w) \dpi{120} \sqrt[4]{2^5\cdot 3^4\cdot 5^{9}\cdot 4^8}


Kysymys 2. Suorita operaatioita radikaalien välillä:

The) \dpi{120} 3\sqrt{2} + 2\sqrt{2} - 4\sqrt{2}

B) \dpi{120} -\sqrt[5]{10} + 7\sqrt[5]{10} + 3\sqrt[5]{10}

w) \dpi{120} \frac{2}{9}\sqrt[3]{7} + \frac{2}{3}\sqrt[3]{7}


Kysymys 3. Arvioi seuraavat operaatiot radikaaleilla:

The) \dpi{120} 2\sqrt{48} + 3\sqrt{75} - 4\sqrt{192}

B) \dpi{120} \sqrt{486} - 5\sqrt{6} -\sqrt{24}


Kysymys 4. Laske tulot radikaalien välillä:

The) \dpi{200} \tiny \sqrt{3}\cdot \sqrt{3}

B) \dpi{200} \tiny \sqrt{3}\cdot \sqrt{6}

w) \dpi{200} \tiny \sqrt{2} \cdot \sqrt[4]{2}\cdot \sqrt[6]{2}


Kysymys 5. Laske radikaalien väliset jaot:

The) \dpi{200} \tiny \frac{\sqrt[5]{256}}{\sqrt[5]{32}}

B) \dpi{200} \tiny \frac{\sqrt{256}}{\sqrt[3]{16}}


Kysymys 6. Kirjoita uudelleen murtoluvut, joissa nimittäjässä ei ole radikaalia:

The) \dpi{200} \tiny \frac{2}{1- \sqrt{2}}

B) \dpi{200} \tiny \frac{\sqrt{x}}{2 - \sqrt{x}}


Kysymys 7. Yksinkertaista lauseke:

\dpi{120} \sqrt{\frac{x^2}{ab^2}+\frac{x^2}{a^2b}}

Ratkaisu kysymykseen 1

The) \dpi{120} \sqrt{3\cdot 2^3\cdot 5^5} 2\cdot 5^2\sqrt{3\cdot 2\cdot 5} 50\sqrt{30}

B) \dpi{120} \sqrt[3]{8\cdot 3^6\cdot 7^4}2\cdot 3^2\cdot 7\sqrt[3]{7} 126\sqrt[3]{7}

w) \dpi{120} \sqrt[4]{2^5\cdot 3^4\cdot 5^{9}\cdot 4^8} 2\cdot 3\cdot 5^2\cdot 4^2\sqrt[4 ]{2\cdot 5} 2400\sqrt[4]{10}

Ratkaisu kysymykseen 2

The) \dpi{120} 3\sqrt{2} + 2\sqrt{2} - 4\sqrt{2} (3+2-4)\cdot \sqrt{2} \sqrt{2}

B) \dpi{120} -\sqrt[5]{10} + 7\sqrt[5]{10} + 3\sqrt[5]{10}(-1+7+3)\cdot \sqrt[5]{ 10} 9\sqrt[5]{10}

w) \dpi{120} \frac{2}{9}\sqrt[3]{7} + \frac{2}{3}\sqrt[3]{7} \bigg( \frac{2}{9}+ \frac{2}{3}\bigg)\cdot \sqrt[3]{7} \frac{8}{9}\sqrt[3]{7}

Ratkaisu kysymykseen 3

The) \inline \dpi{200} \tiny 2\sqrt{48} + 3\sqrt{75} - 4\sqrt{192} 2\sqrt{2^4\cdot 3} + 3\sqrt{3\cdot 5^ 2} - 4\sqrt{2^6\cdot 3} 8\sqrt{3} + 15\sqrt{3} - 32\sqrt{3} -9\sqrt{3}

B) \dpi{120} \sqrt{486} - 5\sqrt{6} -\sqrt{24} \sqrt{2\cdot 3^5} - 5\sqrt{2\cdot 3} -\sqrt{2^3 \cdot 3} 9\sqrt{6} - 5\sqrt{6} - 2\sqrt{6} 2\sqrt{6}

Ratkaisu kysymykseen 4

The) \dpi{200} \tiny \sqrt{3}\cdot \sqrt{3} \sqrt{3\cdot 3} \sqrt{3^2} 3

B) \dpi{200} \tiny \sqrt{3}\cdot \sqrt{6} \sqrt{3\cdot 6} \sqrt{18} \sqrt{2\cdot 3^2} 3\sqrt{2}

w) \dpi{200} \tiny \sqrt{2} \cdot \sqrt[4]{2}\cdot \sqrt[6]{2}

Koska indeksit ovat erilaisia, meidän on poimittava MMC niiden välillä kirjoittaa yhteisellä indeksillä.

MMC(2; 4; 6) = 12

Sitten:

\inline \dpi{200} \tiny \sqrt{2} \cdot \sqrt[4]{2}\cdot \sqrt[6]{2} \sqrt[12]{2^{12:2}} \cdot \sqrt[12]{2^{12:4}}\cdot \sqrt[12]{2^{12:6}} \sqrt[12]{2^{6}} \cdot \sqrt[12]{ 2^{3}}\cdot \sqrt[12]{2^{2}} \sqrt[12]{2^{11}}

Ratkaisu kysymykseen 5

The) \dpi{200} \tiny \frac{\sqrt[5]{256}}{\sqrt[5]{32}} \frac{\sqrt[5]{2^8}}{\sqrt[5]{ 2^5}} \sqrt[5]{\frac{2^8}{2^5}} \sqrt[5]{2^3}

B) \dpi{200} \tiny \frac{\sqrt{256}}{\sqrt[3]{16}} \frac{\sqrt[]{2^8}}{\sqrt[3]{2^4} } \frac{\sqrt[6]{(2^8)^3}}{\sqrt[6]{(2^4)^2}} \sqrt[6]{\frac{2^{24}}{ 2^8}} \sqrt[6]{2^{16}} \sqrt[3]{2^{8}} 4\sqrt[3]{4}

Ratkaisu kysymykseen 6

The) \dpi{200} \tiny \frac{2}{1- \sqrt{2}}

\dpi{120} \frac{2}{1- \sqrt{2}}\cdot \frac{1+\sqrt{2}}{1+\sqrt{2}}
\dpi{120} \frac{2+2\sqrt{2}}{1^2-(\sqrt{2})^2}
\dpi{120} \frac{2+2\sqrt{2}}{1-2}
\dpi{120} -2-2\sqrt{2}

B) \dpi{200} \tiny \frac{\sqrt{x}}{2 - \sqrt{x}}

\dpi{200} \tiny \frac{\sqrt{x}}{2 - \sqrt{x}}\cdot \frac{2 + \sqrt{x}}{2 + \sqrt{x}}
\dpi{200} \tiny \frac{2\sqrt{x} + (\sqrt{x})^2}{2^2 - (\sqrt{x})^2}
\dpi{200} \tiny \frac{2\sqrt{x} + x}{4 - x}

Ratkaisu kysymykseen 7

\dpi{120} \sqrt{\frac{x^2}{ab^2}+\frac{x^2}{a^2b}}
\dpi{120} \sqrt{\frac{x^2}{ab}\bigg(\frac{1}{b}+\frac{1}{a}\bigg)}

\dpi{120} \sqrt{\frac{x^2}{ab}\bigg(\frac{a+b}{ab}\bigg)}

\dpi{120} \sqrt{\frac{x^2(a+b)}{a^2b^2}}

\dpi{120} \frac{x\cdot \sqrt{a+b}}{ab}

Saatat myös olla kiinnostunut:

  • lista voimaharjoituksista
  • Juurrutusharjoitukset
  • Luettelo numeerisen ilmaisun harjoituksista
juurtuminen
Jakaa
Portugalilainen toiminta: Äänestykset
Portugalilainen toiminta: Äänestykset
on Jan 29, 2022
Portugalin toiminta: Intransitiivinen verbi ja transitiivinen verbi
Portugalin toiminta: Intransitiivinen verbi ja transitiivinen verbi
on Jan 29, 2022
Portugalin toiminta: Korostus
Portugalin toiminta: Korostus
on Jan 29, 2022
1 VuosiViides VuosiKirjallisuudetPortugalin KieliMiellekartta SienetMiellekartta ProteiinitMatematiikkaÄiti IiAineYmpäristöTyömarkkinatMytologia6 VuottaMuotitJouluUutisetUutisten VihollinenNumeerinenSanat, Joissa On CParlendasJakaminen AfrikkaAjattelijatTuntisuunnitelmatKuudes VuosiPolitiikkaPortugalin KieliUusimmat Viestit Edellinen ViestiKevätEnsimmäinen MaailmansotaMain
  • 1 Vuosi
  • Viides Vuosi
  • Kirjallisuudet
  • Portugalin Kieli
  • Miellekartta Sienet
  • Miellekartta Proteiinit
  • Matematiikka
  • Äiti Ii
  • Aine
  • Ympäristö
  • Työmarkkinat
  • Mytologia
  • 6 Vuotta
  • Muotit
  • Joulu
  • Uutiset
  • Uutisten Vihollinen
  • Numeerinen
Privacy
© Copyright Education for all people 2025