algebrallisia lausekkeita ovat lausekkeita, jotka näyttävät numeroita ja muuttujia ja tekevät algebrallinen lausekefaktorointi tarkoittaa lausekkeen kirjoittamista kahden tai useamman termin kertolaskuna.
Algebrallisten lausekkeiden faktorointi voi helpottaa monia algebrallisia laskelmia, koska kun otamme huomioon, voimme yksinkertaistaa lauseketta. Mutta miten algebralliset lausekkeet otetaan huomioon?
Katso lisää
Rio de Janeiron opiskelijat kilpailevat mitaleista olympialaisissa…
Matematiikan instituutti on avoinna ilmoittautumista varten olympialaisiin…
Algebrallisten lausekkeiden huomioimiseksi käytämme tekniikoita, joita näemme seuraavaksi.
Faktorointi todisteiden perusteella koostuu yleisen termin korostamisesta algebrallisessa lausekkeessa.
Tämä yleinen termi voi olla vain luku, muuttuja tai näiden kahden kertolasku, eli se on a monomiaalinen.
Esimerkki:
ota lauseke huomioon .
Huomaa, että muuttuja esiintyy tämän lausekkeen molemmissa termeissä , joten laitetaan se todisteeksi:
klo factoring byryhmittely, ryhmittelemme termit, joilla on yhteinen tekijä. Sitten tuomme yhteisen tekijän esiin.
Näin ollen yhteinen tekijä on a polynomi eikä enää monomi, kuten edellisessä tapauksessa.
Esimerkki:
ota lauseke huomioon .
Huomaa, että lauseke muodostuu useiden termien summasta ja että joissakin termeissä esiintyy ja muissa se näkyy .
Kirjoitetaan lauseke uudelleen ryhmittelemällä nämä termit yhteen:
Laitetaan muuttujat se on todisteena:
Katso nyt tuo termi voidaan kirjoittaa uudelleen muotoon , josta voimme todistaa myös numeron 2:
kuten polynomi esiintyy molemmissa termeissä, voimme todistaa sen vielä kerran:
Siksi, .
Jos lauseke on kahden neliön erotus, se voidaan kirjoittaa kantojen summan ja kantajen erotuksen tulona. Se on yksi niistä merkittäviä tuotteita:
Esimerkki:
ota lauseke huomioon .
Huomaa, että tämä lauseke voidaan kirjoittaa uudelleen muotoon , eli se on kahden neliötermin erotus, joiden kantaluvut ovat 9 ja 2x.
Joten kirjoitetaan lauseke kantojen summan ja kantajen eron tulona:
Täydellistä neliötrinomia laskettaessa käytämme myös merkittäviä tuloja ja kirjoitamme lausekkeen kahden termin välisen eron summan tai neliön neliöiksi:
Esimerkki:
ota lauseke huomioon .
Huomaa, että lauseke on täydellinen neliötrinomi, as , se on .
Sitten voimme laskea lausekkeen kirjoittamalla sen kahden termin summan neliöiksi:
Jos lauseke on täydellinen kuutio, tekijä lasketaan kirjoittamalla lauseke summakuutioksi tai erotuskuutioksi.
Esimerkki:
ota lauseke huomioon .
Tämä lauseke on täydellinen kuutio, koska:
Sitten voimme laskea lausekkeen kirjoittamalla sen kahden termin summan kuutioksi:
Jos lauseke on kahden kuution summa tai erotus, voimme kertoa seuraavasti:
Esimerkki:
ota lauseke huomioon .
Huomaa, että lauseke voidaan kirjoittaa muodossa , joten se on kahden kuution ero.
Sitten voimme laskea lausekkeen seuraavasti:
Saatat myös olla kiinnostunut: