O 2-ojo laipsnio funkcijos grafikas, f (x) = ax² + bx + c, yra parabolė ir koeficientai The, B tai yra w yra susiję su svarbiomis palyginimo savybėmis, tokiomis kaip įdubimas.
Be to, viršūnių koordinates parabolės yra apskaičiuojami pagal formules, apimančias koeficientus ir reikšmę diskriminuojantis delta.
Žiūrėti daugiau
NVO laiko „netikėtinu“ federaliniu integralaus švietimo tikslu šalyje
Devintoji ekonomika planetoje, Brazilija turi mažumą piliečių, turinčių…
Savo ruožtu diskriminantas taip pat yra koeficientų funkcija ir iš jo galime nustatyti, ar 2-ojo laipsnio funkcija turi šaknis ir kokios jos yra, jei tokių yra.
Kaip matote, iš koeficientų galime geriau suprasti parabolės formą. Norėdami sužinoti daugiau, žr. a parabolės įdubos ir 2 laipsnio funkcijos koeficientų išspręstų pratimų sąrašas.
Klausimas 1. Nustatykite kiekvienos iš šių 2-ojo laipsnio funkcijų koeficientus ir nurodykite parabolės įdubimą.
a) f(x) = 8x² – 4x + 1
b) f (x) = 2x² + 3x + 5
c) f (x) = 4x² – 5
e) f (x) = -5x²
f) f (x) = x² – 1
2 klausimas. Iš toliau pateiktų kvadratinių funkcijų koeficientų nustatykite parabolių susikirtimo tašką su ordinačių ašimi:
a) f (x) = x² – 2x + 3
b) f (x) = -2x² + 5x
c) f (x) = -x² + 2
d) f (x) = 0,5x² + 3x – 1
3 klausimas. Apskaičiuokite diskriminanto reikšmę ir nustatyti, ar parabolės kerta abscisių ašį.
a) y = -3x² – 2x + 5
b) y = 8x² – 2x + 2
c) y = 4x² – 4x + 1
4 klausimas. Nustatykite kiekvienos iš šių parabolių įdubimą ir viršūnę:
a) y = x² + 2x + 1
b) y = x² – 1
c) y = -0,8x² -x + 1
5 klausimas. Nustatykite parabolės įdubimą, viršūnę, susikirtimo su ašimis taškus ir nubraižykite šią kvadratinę funkciją:
f(x) = 2x² – 4x + 2
a) f(x) = 8x² – 4x + 1
Koeficientai: a = 8, b = -4 ir c = 1
Įdubimas: aukštyn, nes a > 0.
b) f (x) = 2x² + 3x + 5
Koeficientai: a = 2, b = 3 ir c = 5
Įdubimas: aukštyn, nes a > 0.
c) f (x) = –4x² – 5
Koeficientai: a = -4, b = 0 ir c = -5
Įdubimas: žemyn, nes a < 0.
e) f (x) = -5x²
Koeficientai: a = -5, b = 0 ir c = 0
Įdubimas: žemyn, nes a < 0.
f) f (x) = x² – 1
Koeficientai: a = 1, b = 0 ir c = -1
Įdubimas: aukštyn, nes a > 0.
a) f (x) = x² – 2x + 3
Koeficientai: a= 1, b = -2 ir c = 3
Sukirtimo taškas su y ašimi pateikiamas f (0). Šis taškas tiksliai atitinka kvadratinės funkcijos koeficientą c.
Sukirtimo taškas = c = 3
b) f (x) = -2x² + 5x
Koeficientai: a= -2, b = 5 ir c = 0
Sukirtimo taškas = c = 0
c) f (x) = -x² + 2
Koeficientai: a= -1, b = 0 ir c = 2
Sukirtimo taškas = c = 2
d) f (x) = 0,5x² + 3x – 1
Koeficientai: a= 0,5, b = 3 ir c = -1
Sukirtimo taškas = c = -1
a) y = -3x² – 2x + 5
Koeficientai: a = -3, b = -2 ir c = 5
Diskriminuojantis:
Kadangi diskriminantas yra didesnė nei 0, tada parabolė kerta x ašį dviejuose skirtinguose taškuose.
b) y = 8x² – 2x + 2
Koeficientai: a = 8, b = -2 ir c = 2
Diskriminuojantis:
Kadangi diskriminantas yra mažesnė nei 0, tada parabolė nesikerta su x ašimi.
c) y = 4x² – 4x + 1
Koeficientai: a = 4, b = -4 ir c = 1
Diskriminuojantis:
Kadangi diskriminantas yra lygus 0, tada parabolė kerta x ašį viename taške.
a) y = x² + 2x + 1
Koeficientai: a= 1, b = 2 ir c= 1
Įdubimas: aukštyn, nes a > 0
Diskriminuojantis:
Viršūnė:
V(-1,0)
b) y = x² – 1
Koeficientai: a= 1, b = 0 ir c= -1
Įdubimas: aukštyn, nes a > 0
Diskriminuojantis:
Viršūnė:
V(0,-1)
c) y = -0,8x² -x + 1
Koeficientai: a= -0,8, b = -1 ir c= 1
Įdubimas: žemyn, nes a < 0
Diskriminuojantis:
Viršūnė:
V(-0,63; 1,31)
f(x) = 2x² – 4x + 2
Koeficientai: a = 2, b = -4 ir c = 2
Įdubimas: aukštyn, nes a > 0
Viršūnė:
V(1.0)
Sukirtimas su y ašimi:
c = 2 ⇒ taškas (0, 2)
Sukirtimas su x ašimi:
Kaip , tada parabolė kerta x ašį viename taške. Šis taškas atitinka lygties 2x² – 4x + 2 (lygias) šaknis, kurias galima nustatyti pagal bhaskaros formulė:
Todėl parabolė taške kerta x ašį (1,0).
Grafika:
Jus taip pat gali sudominti: