algebriskās izteiksmes ir izteiksmes, kas parāda skaitļus un mainīgos un veido algebriskās izteiksmes faktorizācija nozīmē rakstīt izteiksmi kā divu vai vairāku vārdu reizinājumu.
Algebrisko izteiksmju faktorēšana var atvieglot daudzus algebriskos aprēķinus, jo, faktorējot, mēs varam vienkāršot izteiksmi. Bet kā faktorēt algebriskās izteiksmes?
redzēt vairāk
Studenti no Riodežaneiro cīnīsies par medaļām olimpiskajās spēlēs…
Matemātikas institūts ir atvērts reģistrācijai olimpiādei…
Lai ņemtu vērā algebriskās izteiksmes, mēs izmantojam metodes, kuras mēs redzēsim tālāk.
Faktorēšana pēc pierādījumiem sastāv no kopīga termina izcelšanas algebriskajā izteiksmē.
Šis parastais termins var būt tikai skaitlis, mainīgais vai abu reizinājums, tas ir, tas ir a monomāls.
Piemērs:
faktors izteiksmi .
Ņemiet vērā, ka mainīgais parādās abos šīs izteiksmes terminos , tāpēc liksim to kā pierādījumu:
Plkst faktorings argrupēšana, mēs sagrupējam terminus, kuriem ir kopīgs faktors. Tad priekšplānā izvirzām kopējo faktoru.
Tādējādi kopējais faktors ir a polinoms un vairs nav monoms, kā iepriekšējā gadījumā.
Piemērs:
faktors izteiksmi .
Ņemiet vērā, ka izteiksmi veido vairāku terminu summa, un dažos terminos tas parādās un citās tas parādās .
Pārrakstīsim izteiksmi, sagrupējot šos terminus:
Ieliksim mainīgos Tas ir pierādījumos:
Tagad skatiet šo terminu var pārrakstīt kā , no kura mēs varam pierādīt arī skaitli 2:
tāpat kā polinoms parādās abos terminos, mēs varam to vēlreiz pierādīt:
Tāpēc .
Ja izteiksme ir divu kvadrātu starpība, to var uzrakstīt kā bāzu summas un bāzu starpības reizinājumu. Tas ir viens no ievērojami produkti:
Piemērs:
faktors izteiksmi .
Ņemiet vērā, ka šo izteiksmi var pārrakstīt kā , tas ir, tā ir divu kvadrātvārdu starpība, kuru bāzes ir 9 un 2x.
Tātad, rakstīsim izteiksmi kā bāzu summas un bāzu starpības reizinājumu:
Faktorējot perfekto kvadrātveida trinomu, mēs izmantojam arī ievērojamos reizinājumus un ierakstām izteiksmi kā summas kvadrātu vai starpības starp diviem vārdiem kvadrātu:
Piemērs:
faktors izteiksmi .
Ņemiet vērā, ka izteiksme ir ideāls kvadrātveida trinomāls, kā , Tas ir .
Tad mēs varam faktorēt izteiksmi, ierakstot to kā divu terminu summas kvadrātu:
Ja izteiksme ir ideāls kubs, mēs faktorējam, ierakstot izteiksmi kā summas kubu vai starpības kubu.
Piemērs:
faktors izteiksmi .
Šī izteiksme ir ideāls kubs, jo:
Tad mēs varam faktorēt izteiksmi, ierakstot to kā divu terminu summas kubu:
Ja izteiksme ir divu kubu summa vai starpība, mēs varam faktorēt šādi:
Piemērs:
faktors izteiksmi .
Ņemiet vērā, ka izteiksmi var uzrakstīt kā , tātad tā ir divu kubu atšķirība.
Tad mēs varam faktorēt izteiksmi šādi:
Jūs varētu arī interesēt: