O reeks natuurlijke getallen wordt gevormd door de getallen die we gebruiken om te tellen. Het kleinste natuurlijke getal is nul; de grootste is niet te bepalen, aangezien de verzameling oneindig is.
De verzameling natuurlijke getallen wordt weergegeven door de letter en kan als volgt worden geschreven:
Bekijk meer
Studenten uit Rio de Janeiro strijden om medailles op de Olympische Spelen...
Het Instituut voor Wiskunde staat open voor inschrijving voor de Olympische Spelen...
Bekijk hoe de basisbewerkingen tussen natuurlijke getallen en hun belangrijkste eigenschappen worden uitgevoerd.
Bewerkingen met natuurlijke getallen:
Eigenschappen van natuurlijke getallen:
Voor meer informatie over dit onderwerp, bekijk hieronder a set van natuurlijke getallen oefenlijst. Alle oefeningen worden stap voor stap opgelost!
Vraag 1. Herschrijf elk van de onderstaande zinnen met behulp van de symbolen < of >:
a) 2 is kleiner dan 8.
b) 13 is groter dan 7.
c) 19 is minder dan 20.
Vraag 2. Welke van de onderstaande getallen behoort tot de verzameling natuurlijke getallen?
een) 0
b) – 4
c) 1
d) 0,5
e) 1.000.000.000
F)
Vraag 3. Vul aan met de ontbrekende waarde en schrijf uw naam in elk van de bewerkingen:
a) 1432 + _____ = 2800
b) _____ – 1040 = 5390
c) 141. _____ = 846
d) 12000 ÷ _____ = 800
Vraag 4. Bepaal de onbekende waarde in elk van de operaties:
a) 8 + ____ – 10 = 6
b) 3. (7 + ____) = 27
c) (26 – ____) ÷ 4 = 5
d) 30+3. ____ = 54
Vraag 5. Los bewerkingen op twee verschillende manieren op:
a) 5. 9 + 5. 11 =
b) 8. 19 + 3. 19 =
c) (21 + 35) ÷ 7 =
Vraag 6. Schrijf als een enkele macht:
De)
B)
w)
D)
Vraag 7. Bepaal het resultaat van .
Vraag 8. Bereken het resultaat van .
a) 2 < 8.
b) 13 > 7.
c) 19 < 20.
ah ja.
b) Nee.
c) Ja.
d) Nee.
en ja.
f) Nee.
a) 1432 + _____ = 2800
2800 – 1432 = 1368 ⇒ 1432 + 1368 = 2800
1368 wordt een complot genoemd.
b) _____ – 1040 = 5390
5390 + 1040 = 6430 ⇒ 6430 – 1040 = 5390
6430 wordt een minuend genoemd.
c) 141. _____ = 846
846 ÷ 141 = 6 ⇒ 141. 6 = 846
6 wordt een factor genoemd.
d) 12000 ÷ _____ = 800
12000 ÷ 800 = 15 ⇒ 12000 ÷ 15 = 800
15 wordt een deler genoemd.
a) 8 + ____ – 10 = 6
⇒ 8 + ____ = 6 + 10
⇒ 8 + ____ = 16
⇒ 8 + 8 = 16
b) 3. (7 + ____) = 27
⇒ 7 + ____ = 27 ÷ 3
⇒ 7 + ____ = 9
⇒ 7 + 2 = 9
c) (26 – ____) ÷ 4 = 5
⇒ 26 – ____ = 5. 4
⇒ 26 – ____ = 20
⇒ 26 – 6 = 20
d) 30+3. ____ = 54
⇒ 3. ____ = 54 – 30
⇒ 3. ____ = 24
⇒ 3. 8 = 24
a) 5. 9 + 5. 11 =
1e vorm) 5. 9 + 5. 11 = 45 + 55 = 100
2e vorm) 5. 9 + 5. 11 = 5.(9 + 11) = 5. 20 = 100
b) 8. 19 + 3. 19 =
1e vorm) 8. 19 + 3. 19 = 152 + 57 = 209
2e vorm) 8. 19 + 3. 19 = (8 + 3). 19 = 11. 19 = 209
c) (21 + 35) ÷ 7 =
1e vorm) (21 + 35) ÷ 7 = 56 ÷ 7 = 8
2e vorm) (21 + 35) ÷ 7 = (21 ÷ 7) + (35 ÷ 7) = 3 + 5 = 8
De)
B)
w)
D)
Mogelijk bent u ook geïnteresseerd: