Education for all people
Blisko
Menu

Nawigacja

  • 1 Rok
  • 5 Rok
  • Literatury
  • Język Portugalski
  • Polish
    • Russian
    • English
    • Arabic
    • Bulgarian
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Estonian
    • Finnish
    • French
    • Georgian
    • German
    • Greek
    • Hebrew
    • Hindi
    • Hungarian
    • Indonesian
    • Italian
    • Japanese
    • Korean
    • Latvian
    • Lithuanian
    • Norwegian
    • Polish
    • Romanian
    • Serbian
    • Slovak
    • Slovenian
    • Spanish
    • Swedish
    • Thai
    • Turkish
    • Ukrainian
    • Persian
Blisko

Kostka sumy i kostka różnicy

Kostka sumy i kostka różnicy są dwa rodzaje godne uwagi produkty, gdzie dwa wyrazy są dodawane lub odejmowane, a następnie dzielone na sześciany, czyli z wykładnikiem równym 3.

(x + y) ³ -> sześcian sumy

Zobacz więcej

Studenci z Rio de Janeiro powalczą o medale na igrzyskach olimpijskich…

Instytut Matematyki rozpoczyna rejestrację na Igrzyska Olimpijskie…

(x – y) ³ -> sześcian różnicy

Sześcian sumy można również zapisać jako (x+y). (x+y). (x + y) a sześcian różnicy jako (x – y). (x – y). (x - y).

Produkty te otrzymują nazwę godnych uwagi produktów ze względu na ich znaczenie, ponieważ często pojawiają się w obliczeniach algebraicznych.

Teraz pamiętaj, że w matematyce to samo wyrażenie można zapisać w inny sposób, ale bez zmiany jego wartości. Na przykład x + 1 + 1 można zapisać po prostu jako x + 2.

Często przepisując wyrażenie, możemy uprościć i rozwiązać wiele problemów algebraicznych. Dlatego zobaczmy inny sposób zapisywania sześcianu sumy i sześcianu różnicy, rozwijając je algebraicznie.

sześcian sumy

O sześcian sumy jest niezwykłym produktem (x + y) ³, który jest taki sam jak (x + y). (x+y). (x+y). W ten sposób możemy napisać:

(x + y) ³ = (x + y). (x+y). (x + y)

Teraz, biorąc to pod uwagę (x + y). (x + y) = (x + y) ² = x² + 2xy + y², sześcian sumy można zapisać jako:

(x + y) ³ = (x + y). (x² + 2xy + y²)

Mnożenie wielomianu (x + y) przez (x² + 2xy + y²), widzimy, że:

(x + y) ³ = x³ + 2x²y + xy² + x²y + 2xy² + y³

Dodając wyrazy podobne, otrzymujemy, że sześcian sumy jest określony wzorem:

(x + y) ³ = x³ + 3x²y + 3xy² + y³

Przykład:

Rozwiń każdą kostkę algebraicznie:

a) (x + 5)²

(x + 5)² = (x) ³ + 3.(x) ².(5) + 3.(x).(5)² + (5)³

= x³ + 3.x².5 + 3.x.25 + 125

= x³ +15x² +75x + 125

b) (1 + 2b) ³

(1 + 2b) ³ = (1)³ + 3.(1)².(2b) + 3.(1).(2b) ² + (2b) ³

 = 1 + 3.1.2b + 3.1.4b² + 8b³

= 1 + 6b + 12b² + 8b³

sześcian różnicy

O sześcian różnicy jest iloczynem godnym uwagi (x – y) ³, który jest taki sam jak (x – y). (x – y). (x – y). Musimy więc:

(x – y) ³ = (x – y). (x – y). (x - y)

Jak (x – y). (x – y) = (x – y) ² = x² – 2xy + y², sześcian różnicy można zapisać jako:

(x – y) ³ = (x – y). (x² – 2xy + y²)

Mnożąc (x – y) przez (x² – 2xy + y²), widzimy, że:

(x – y) ³ = x³ – 2x²y + xy² – x²y + 2xy² – y³

Dodając wyrazy podobne, otrzymujemy, że sześcian różnicy jest określony wzorem:

(x – y) ³ = x³ – 3x²y + 3xy² – y³

Przykład:

Rozwiń każdą kostkę algebraicznie:

a) (x – 2)³

(x – 2)³ = (x) ³ – 3.(x) ².(2) + 3.(x).(2)² – (2)³

= x³ – 3.x².2 + 3.x.4 – 8

= x³ – 6x² + 12x – 8

b) (2a – b) ³

(2a – b) ³ = (2a) ³ – 3.(2a) ².(b) + 3.(2a).(b²) – (b) ³

= 8a³ – 3,4a².b + 3,2a.b² – b³

= 8a³ – 12a²b + 6ab² – b³

Możesz być także zainteresowany:

  • Faktoryzacja wyrażeń algebraicznych
  • Obliczenia algebraiczne z wykorzystaniem jednomianów
  • ułamki algebraiczne
Z badania wynika, że ​​w Brazylii przetrzymywanych jest ponad 11 tysięcy nastolatków
Z badania wynika, że ​​w Brazylii przetrzymywanych jest ponad 11 tysięcy nastolatków
on Dec 06, 2023
Działalność portugalska: Rodzaje przedmiotów
Działalność portugalska: Rodzaje przedmiotów
on Dec 06, 2023
Działalność portugalska: Przysłówki czasu
Działalność portugalska: Przysłówki czasu
on Dec 06, 2023
1 Rok5 RokLiteraturyJęzyk PortugalskiMapa Myśli FungiMapa Myśli BiałkaMatematykaMatka IiMateriaŚrodowiskoRynek PracyMitologia6 LatFormyBoże NarodzenieAktualnościWróg WiadomościLiczbowySłowa Z CParlendasDzielenie Się AfrykąMyślicielePlany Lekcji6 RokPolitykaPortugalskiOstatnie Posty Poprzednie PostyWiosnaPierwsza Wojna światowaGłówny
  • 1 Rok
  • 5 Rok
  • Literatury
  • Język Portugalski
  • Mapa Myśli Fungi
  • Mapa Myśli Białka
  • Matematyka
  • Matka Ii
  • Materia
  • Środowisko
  • Rynek Pracy
  • Mitologia
  • 6 Lat
  • Formy
  • Boże Narodzenie
  • Aktualności
  • Wróg Wiadomości
  • Liczbowy
Privacy
© Copyright Education for all people 2025