алгебраїчні вирази це вирази, які відображають числа та змінні та створюють алгебраїчний вираз факторизація означає записати вираз як множення двох або більше доданків.
Розкладання алгебраїчних виразів на множники може полегшити багато алгебраїчних обчислень, оскільки, розкладаючи на множники, ми можемо спростити вираз. але як розкласти алгебраїчні вирази на множники?
побачити більше
Студенти з Ріо-де-Жанейро змагатимуться за медалі на Олімпіаді…
Інститут математики відкриває реєстрацію на олімпіаду…
Щоб розкласти алгебраїчні вирази на множники, ми використовуємо прийоми, які ми побачимо далі.
Розкладання на множники за доказами полягає у виділенні загального терміна в алгебраїчному виразі.
Цей загальний термін може бути просто числом, змінною або множенням двох, тобто це одночлен.
приклад:
розкладіть вираз .
Зауважте, що в обох членах цього виразу з’являється змінна , тож давайте наведемо це як доказ:
на факторинг загрупування, ми групуємо терміни, які мають спільний фактор. Тоді ми висуваємо спільний фактор на перший план.
Таким чином, спільним множником є a поліном а не одночлен, як у попередньому випадку.
приклад:
розкладіть вираз .
Зауважте, що вираз утворено сумою кількох доданків і в деяких доданках з’являється а в інших з’являється .
Давайте перепишемо вираз, згрупувавши ці терміни разом:
Давайте помістимо змінні Це є в доказ:
Тепер подивіться на термін можна переписати як , звідки ми також можемо підтвердити число 2:
як поліном з’являється в обох термінах, ми можемо підтвердити це ще раз:
тому .
Якщо вираз є різницею двох квадратів, його можна записати як добуток суми основ на різницю основ. Це один із помітні продукти:
приклад:
розкладіть вираз .
Зверніть увагу, що цей вираз можна переписати як , тобто це різниця двох квадратних доданків, основи яких дорівнюють 9 і 2x.
Отже, запишемо вираз у вигляді добутку суми основ на різницю основ:
Розкладаючи тричлен ідеального квадрата на множники, ми також використовуємо помітні добутки та записуємо вираз як квадрат суми або квадрат різниці між двома доданками:
приклад:
розкладіть вираз .
Зверніть увагу, що вираз є тричленом повного квадрата, як , Це є .
Тоді ми можемо розкласти вираз, записавши його як квадрат суми двох доданків:
Якщо вираз є ідеальним кубом, ми розкладаємо його на множники, записуючи вираз у вигляді куба суми або куба різниці.
приклад:
розкладіть вираз .
Цей вираз є ідеальним кубом, оскільки:
Тоді ми можемо розкласти вираз, записавши його як куб суми двох доданків:
Якщо вираз є сумою або різницею двох кубів, ми можемо розкласти наступним чином:
приклад:
розкладіть вираз .
Зверніть увагу, що вираз можна записати як , тому це різниця двох кубів.
Тоді ми можемо розкласти вираз наступним чином:
Вас також може зацікавити: