Education for all people
Fermer
Menu

La navigation

  • 1 Année
  • 5ème Année
  • Littératures
  • Langue Portugaise
  • French
    • Russian
    • English
    • Arabic
    • Bulgarian
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Estonian
    • Finnish
    • French
    • Georgian
    • German
    • Greek
    • Hebrew
    • Hindi
    • Hungarian
    • Indonesian
    • Italian
    • Japanese
    • Korean
    • Latvian
    • Lithuanian
    • Norwegian
    • Polish
    • Romanian
    • Serbian
    • Slovak
    • Slovenian
    • Spanish
    • Swedish
    • Thai
    • Turkish
    • Ukrainian
    • Persian
Fermer

Exercices sur les segments proportionnels

Lorsque le rapport de deux segments de droite est égal au rapport de deux autres segments, ils sont appelés segments proportionnels.

UN raison entre deux segments s'obtient en divisant la longueur de l'un par l'autre.

voir plus

Des étudiants de Rio de Janeiro concourront pour des médailles aux Jeux Olympiques…

L'Institut de Mathématiques est ouvert aux inscriptions pour les Jeux Olympiques…

Ainsi, étant donné quatre segments de droite proportionnels de longueurs Le, B, w C'est d, dans cet ordre, nous avons un proportion:

\dpi{120} \mathbf{\frac{a}{b} \frac{c}{d}}

Et, par la propriété fondamentale des proportions, nous avons \dpi{120} \mathbf{ ad cb}.

Pour en savoir plus, consultez un liste d'exercices sur les segments proportionnels, avec toutes les questions résolues!

Exercices sur les segments proportionnels


Question 1. Les tranches \dpi{120} \overline{AB}, \overline{CD}, \overline{EF}\, \mathrm{e}\, \overline{GH} sont, dans cet ordre, des segments proportionnels. Déterminer la mesure de \dpi{120} \overline{CD} sachant que \dpi{120} \overline{AB} 5, \dpi{120} \overline{EF} 7.5 C'est \dpi{120} \overline{GH} 13,8.


Question 2. Déterminer \dpi{120} \overline{BC} sachant que \dpi{120} \frac{\overline{AB}}{7} \frac{\overline{BC}}{4} est-ce:

segment de ligne

Question 3. Déterminer \dpi{120} \overline{AB} sachant que \dpi{120} \frac{\overline{AB}}{2} \frac{\overline{BC}}{5} est-ce:

segment de ligne

Question 4. Déterminez les longueurs des côtés d'un triangle qui a un périmètre de 52 unités et dont les côtés sont proportionnels aux côtés d'un autre triangle de longueurs 2, 6 et 5.


Résolution de la question 1

Si les segments \dpi{120} \overline{AB}, \overline{CD}, \overline{EF}\, \mathrm{e}\, \overline{GH} sont, dans cet ordre, des segments proportionnels, alors :

\dpi{120} \frac{\overline{AB}}{\overline{CD}} \frac{\overline{EF}}{\overline{GH}}

remplacer \dpi{120} \overline{AB} 5, \dpi{120} \overline{EF} 7.5 C'est \dpi{120} \overline{GH} 13,8, Nous devons:

\dpi{120} \frac{5}{\overline{CD}} \frac{7,5}{13,8}

Application de la propriété fondamentale des proportions :

\dpi{120} \Rightarrow 7.5 \cdot \overline{CD} 69
\dpi{120} \Rightarrow \overline{CD} \frac{69}{7.5}
\dpi{120} \Rightarrow \overline{CD} 9.2

Résolution de la question 2

Nous avons:

\dpi{120} \frac{\overline{AB}}{7} \frac{\overline{BC}}{4}

remplacer \dpi{120} \overline{AB} 11, Nous devons:

\dpi{120} \frac{11}{7} \frac{\overline{BC}}{4}

Application de la propriété fondamentale des proportions :

\dpi{120} \Rightarrow 7\overline{BC} 44
\dpi{120} \Rightarrow \overline{BC} \frac{44}{7}
\dpi{120} \Rightarrow \overline{BC} \environ 6,28

Résolution de la question 3

Nous avons:

\dpi{120} \frac{\overline{AB}}{2} \frac{\overline{BC}}{5}

Comme \dpi{120} \overline{AB} + \overline{BC} 21, alors, \dpi{120} \overline{AB} 21 - \overline{BC}. En remplaçant dans l'expression ci-dessus, on a :

\dpi{120} \frac{21-\overline{BC}}{2} \frac{\overline{BC}}{5}

Application de la propriété fondamentale des proportions :

\dpi{120} \Rightarrow 2\overline{BC} 5(21- \overline{BC})
\dpi{120} \Rightarrow 2\overline{BC} 105- 5\overline{BC}
\dpi{120} \Rightarrow 7\overline{BC} 105
\dpi{120} \Rightarrow \overline{BC} \frac{105}{7}
\dpi{120} \Rightarrow \overline{BC} 15

Bientôt \dpi{120} \overline{AB} 21 - \overline{BC} 21 - 15 6.

Résolution de la question 4

En faisant un dessin représentatif, on peut voir que \dpi{120} \overline{AB} + \overline{BC} + \overline{AC} 52.

triangles semblables

Comme les côtés des triangles sont proportionnels, on a :

\dpi{120} \frac{\overline{AB}}{2} \frac{\overline{BC}}{6} \frac{\overline{AC}}{5} r

Être \dpi{120} r le rapport de proportionnalité.

De plus, si les côtés sont proportionnels, leur somme, c'est-à-dire les périmètres, est aussi :

\dpi{120} \frac{\overline{AB} + \overline{BC} +\overline{AC} }{2 + 6 + 5} r
\dpi{120} \Rightarrow \frac{52 }{13} r
\dpi{120} \Rightarrow r 4

A partir du rapport de proportionnalité et des côtés connus, on obtient les mesures des côtés de l'autre triangle :

\dpi{120} \overline{AB} r\cdot \overline{A'B'} 4\cdot 2 8
\dpi{120} \overline{BC} r\cdot \overline{B'C'} 4\cdot 6 24
\dpi{120} \overline{AC} r\cdot \overline{A'C'} 4\cdot 5 20

Pour télécharger cette liste d'exercices sur les segments proportionnels en PDF, cliquez ici !

Vous pouvez également être intéressé :

  • similitude des triangles
  • Théorème de Thalès
  • Liste d'exercices sur la similarité des triangles
  • Liste d'exercices sur le rapport et la proportion
  • Liste d'exercices sur le théorème de Thales
Des billets d'avion à R$ 200? Le gouvernement devrait publier plus tard cette année
Des billets d'avion à R$ 200? Le gouvernement devrait publier plus tard cette année
on Aug 02, 2023
Franchise Chiquinho Ice Cream: Combien cela coûte-t-il de devenir franchisé ?
Franchise Chiquinho Ice Cream: Combien cela coûte-t-il de devenir franchisé ?
on Aug 02, 2023
Défaut ne signifie pas être dépourvu de droits; connaître vos droits fondamentaux
Défaut ne signifie pas être dépourvu de droits; connaître vos droits fondamentaux
on Aug 02, 2023
1 Année5ème AnnéeLittératuresLangue PortugaiseCarte Mentale ChampignonsCarte Mentale ProtéinesMathMaternelle IiMatièreEnvironnementMarché Du TravailMythologie6 AnsMoulesNoëlNouvellesNouvelles EnemNumériqueMots Avec CParlendasPartage AfriquePenseursPlans De Cours6ème AnnéePolitiquePortugaisArticles Récents Articles PrécédentsPrintempsPremière Guerre MondialePrincipale
  • 1 Année
  • 5ème Année
  • Littératures
  • Langue Portugaise
  • Carte Mentale Champignons
  • Carte Mentale Protéines
  • Math
  • Maternelle Ii
  • Matière
  • Environnement
  • Marché Du Travail
  • Mythologie
  • 6 Ans
  • Moules
  • Noël
  • Nouvelles
  • Nouvelles Enem
  • Numérique
Privacy
© Copyright Education for all people 2025