Education for all people
Menutup
Tidak bisa

Navigasi

  • 1 Tahun
  • Tahun Ke 5
  • Sastra
  • Bahasa Portugis
  • Indonesian
    • Russian
    • English
    • Arabic
    • Bulgarian
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Estonian
    • Finnish
    • French
    • Georgian
    • German
    • Greek
    • Hebrew
    • Hindi
    • Hungarian
    • Indonesian
    • Italian
    • Japanese
    • Korean
    • Latvian
    • Lithuanian
    • Norwegian
    • Polish
    • Romanian
    • Serbian
    • Slovak
    • Slovenian
    • Spanish
    • Swedish
    • Thai
    • Turkish
    • Ukrainian
    • Persian
Menutup

Kubus Jumlah dan Kubus Selisih

Kubus Jumlah dan Kubus Selisih adalah dua jenis produk terkenal, di mana dua suku dijumlahkan atau dikurangkan, lalu dikalikan tiga, yaitu dengan eksponen sama dengan 3.

(x + y) ³ -> jumlah kubus

lihat lebih banyak

Siswa dari Rio de Janeiro akan bersaing memperebutkan medali di Olimpiade…

Institut Matematika membuka pendaftaran untuk Olimpiade…

(x – y) ³ -> kubus perbedaan

Jumlah kubus juga dapat ditulis sebagai (x+y). (x+y). (x + y) dan pangkat tiga selisihnya sebagai (x – y). (x – y). (x - y).

Produk-produk ini menerima nama produk terkenal karena kepentingannya, karena sering muncul dalam perhitungan aljabar.

Sekarang, ingatlah bahwa dalam matematika, ekspresi yang sama dapat ditulis dengan cara lain, tetapi tanpa mengubah nilainya. Sebagai contoh, x + 1 + 1 dapat dituliskan sebagai x + 2.

Sering kali, ketika kita menulis ulang suatu ekspresi, kita dapat menyederhanakan dan menyelesaikan banyak soal aljabar. Oleh karena itu, mari kita lihat cara lain untuk menulis pangkat tiga dari jumlah dan pangkat tiga selisih, mengembangkannya secara aljabar.

jumlah kubus

HAI jumlah kubus adalah perkalian luar biasa (x + y) ³, yang sama dengan (x + y). (x+y). (x+y). Dengan cara ini, kita dapat menulis:

(x + y) ³ = (x + y). (x+y). (x + y)

Sekarang, mengingat (x + y). (x + y) = (x + y) ² = x² + 2xy + y², pangkat tiga dari jumlah tersebut dapat ditulis sebagai:

(x + y) ³ = (x + y). (x² + 2xy + y²)

Mengalikan polinomial (x + y) dengan (x² + 2xy + y²), kita dapat melihat bahwa:

(x + y) ³ = x³ + 2x²y + xy² + x²y + 2xy² + y³

Menjumlahkan suku-suku sejenis, kita mendapatkan bahwa pangkat tiga dari jumlah tersebut diberikan oleh:

(x + y) ³ = x³ + 3x²y + 3xy² + y³

Contoh:

Kembangkan setiap kubus secara aljabar:

a) (x + 5)²

(x + 5)² = (x) ³ + 3.(x) ².(5) + 3.(x).(5)² + (5)³

= x³ + 3.x².5 + 3.x.25 + 125

= x³ +15x² +75x + 125

b) (1 + 2b) ³

(1 + 2b) ³ = (1)³ + 3.(1)².(2b) + 3.(1).(2b) ² + (2b) ³

 = 1 + 3.1.2b + 3.1.4b² + 8b³

= 1 + 6b + 12b² + 8b³

perbedaan kubus

HAI perbedaan kubus adalah perkalian penting (x – y) ³, yang sama dengan (x – y). (x – y). (x – y). Jadi, kita harus:

(x – y) ³ = (x – y). (x – y). (x - y)

Seperti (x – y). (x – y) = (x – y) ² = x² – 2xy + y², pangkat tiga selisihnya dapat ditulis sebagai:

(x – y) ³ = (x – y). (x² – 2xy + y²)

Mengalikan (x – y) dengan (x² – 2xy + y²), kita dapat melihat bahwa:

(x – y) ³ = x³ – 2x²y + xy² – x²y + 2xy² – y³

Menjumlahkan suku-suku sejenis, kita mendapatkan pangkat tiga selisihnya diberikan oleh:

(x – y) ³ = x³ – 3x²y + 3xy² – y³

Contoh:

Kembangkan setiap kubus secara aljabar:

a) (x – 2)³

(x – 2)³ = (x) ³ – 3.(x) ².(2) + 3.(x).(2)² – (2)³

= x³ – 3.x².2 + 3.x.4 – 8

= x³ – 6x² + 12x – 8

b) (2a – b) ³

(2a – b) ³ = (2a) ³ – 3.(2a) ².(b) + 3.(2a).(b²) – (b) ³

= 8a³ – 3.4a².b + 3.2a.b² – b³

= 8a³ – 12a²b + 6ab² – b³

Anda mungkin juga tertarik:

  • Faktorisasi Ekspresi Aljabar
  • Perhitungan aljabar yang melibatkan monomial
  • pecahan aljabar
Proyek Hari Buku untuk Pendidikan Anak Usia Dini dan Seri Awal
Proyek Hari Buku untuk Pendidikan Anak Usia Dini dan Seri Awal
on Jul 22, 2021
Budaya Afro-Brasil – Pendidikan dan Transformasi
Budaya Afro-Brasil – Pendidikan dan Transformasi
on Jul 22, 2021
Kegiatan Cerita Rakyat untuk TK dan SD
Kegiatan Cerita Rakyat untuk TK dan SD
on Jul 22, 2021
1 TahunTahun Ke 5SastraBahasa PortugisPeta Pikiran JamurPeta Pikiran ProteinMatematikaIbu IiMasalahLingkungan HidupPasar Tenaga KerjaMitologi6 TahunCetakanHari NatalBeritaBerita MusuhNumeralKata Kata Dengan CParlendaBerbagi AfrikaPemikirRencana PelajaranTahun Ke 6PolitikPortugisPosting Terbaru Posting SebelumnyaMusim SemiPerang Dunia PertamaUtama
  • 1 Tahun
  • Tahun Ke 5
  • Sastra
  • Bahasa Portugis
  • Peta Pikiran Jamur
  • Peta Pikiran Protein
  • Matematika
  • Ibu Ii
  • Masalah
  • Lingkungan Hidup
  • Pasar Tenaga Kerja
  • Mitologi
  • 6 Tahun
  • Cetakan
  • Hari Natal
  • Berita
  • Berita Musuh
  • Numeral
Privacy
© Copyright Education for all people 2025