ביטויים אלגבריים הם ביטויים המציגים מספרים ומשתנים, והופכים את פירוק ביטוי אלגברי פירושו לכתוב את הביטוי ככפל של שני איברים או יותר.
הפקת ביטויים אלגבריים יכולים להקל על חישובים אלגבריים רבים, מכיוון שכאשר אנו מביאים בחשבון, אנו יכולים לפשט את הביטוי. אבל כיצד להפעיל ביטויים אלגבריים?
ראה עוד
תלמידים מריו דה ז'נרו יתחרו על מדליות באולימפיאדה...
המכון למתמטיקה פתוח להרשמה לאולימפיאדה...
כדי להביא בחשבון ביטויים אלגבריים, אנו משתמשים בטכניקות שנראה בהמשך.
פקטורון לפי ראיות מורכב מהדגשת מונח נפוץ בביטוי האלגברי.
המונח הנפוץ הזה יכול להיות רק מספר, משתנה או כפל של השניים, כלומר הוא a מונומיאלי.
דוגמא:
גורם לביטוי .
שימו לב שבשני מונחי הביטוי הזה המשתנה מופיע , אז בואו נשים את זה לראיה:
בְּ פקטורינג לפיהַקבָּצָה, אנו מקבצים את המונחים שיש להם גורם משותף. לאחר מכן אנו מביאים את הגורם המשותף לקדמת הבמה.
לפיכך, הגורם המשותף הוא א פולינום ולא עוד מונומיאל, כמו במקרה הקודם.
דוגמא:
גורם לביטוי .
שימו לב שהביטוי נוצר על ידי סכום של מספר איברים, ובחלק מהמונחים מופיע ובאחרים זה מופיע .
הבה נשכתב את הביטוי, ונקבץ את המונחים האלה יחד:
בוא נשים את המשתנים זה לראיה:
עכשיו, תראה את המונח הזה ניתן לשכתב כ , שממנו נוכל לשים את המספר 2 כעדות גם כן:
כמו הפולינום מופיע בשני המונחים, אנו יכולים להוכיח זאת פעם נוספת:
לָכֵן, .
אם הביטוי הוא הפרש של שני ריבועים, אפשר לכתוב אותו כמכפלת סכום הבסיסים והפרש הבסיסים. זה אחד מ מוצרים בולטים:
דוגמא:
גורם לביטוי .
שימו לב שניתן לכתוב מחדש את הביטוי הזה בתור , כלומר, מדובר בהבדל של שני איברים מרובעים, שהבסיסים שלהם הם 9 ו-2x.
אז בוא נכתוב את הביטוי כמכפלת סכום הבסיסים והפרש הבסיסים:
בחלוקת הטרינום הריבועי המושלם, אנו משתמשים גם במוצרים הבולטים וכותבים את הביטוי כריבוע הסכום או הריבוע של ההפרש בין שני איברים:
דוגמא:
גורם לביטוי .
שימו לב שהביטוי הוא טרינום מרובע מושלם, כמו , זה .
אז נוכל לחלק את הביטוי ולכתוב אותו כריבוע של סכום שני איברים:
אם הביטוי הוא קובייה מושלמת, אנו מביאים בחשבון על ידי כתיבת הביטוי כקוביית הסכום או קוביית ההפרש.
דוגמא:
גורם לביטוי .
ביטוי זה הוא קובייה מושלמת כי:
אז נוכל לחלק את הביטוי ולכתוב אותו כקוביית סכום שני איברים:
אם הביטוי הוא סכום או הפרש של שתי קוביות, נוכל להשפיע באופן הבא:
דוגמא:
גורם לביטוי .
שימו לב שניתן לכתוב את הביטוי בתור , אז זה הבדל של שתי קוביות.
אז נוכל לחלק את הביטוי באופן הבא:
אולי יעניין אותך גם: