algebraïsche uitdrukkingen zijn uitdrukkingen die getallen en variabelen weergeven, en maken de algebraïsche uitdrukkingsfactorisatie betekent de uitdrukking schrijven als een vermenigvuldiging van twee of meer termen.
Door algebraïsche uitdrukkingen in factoren te ontbinden, kunnen veel algebraïsche berekeningen eenvoudiger worden, want als we ontbinden in factoren, kunnen we de uitdrukking vereenvoudigen. Maar hoe algebraïsche uitdrukkingen te ontbinden?
Bekijk meer
Studenten uit Rio de Janeiro strijden om medailles op de Olympische Spelen...
Het Instituut voor Wiskunde staat open voor inschrijving voor de Olympische Spelen...
Om algebraïsche uitdrukkingen te ontbinden in factoren, gebruiken we de technieken die we hierna zullen zien.
Factoring by evidence bestaat uit het benadrukken van een gemeenschappelijke term in de algebraïsche uitdrukking.
Deze gemeenschappelijke term kan gewoon een getal, een variabele of een vermenigvuldiging van de twee zijn, dat wil zeggen, het is een monomiaal.
Voorbeeld:
factor de uitdrukking .
Merk op dat in beide termen van deze uitdrukking de variabele voorkomt , dus laten we het als bewijsmateriaal gebruiken:
Bij factoring doorgroeperinggroeperen we de termen die een factor gemeen hebben. Dan brengen we de gemeenschappelijke factor naar voren.
De gemeenschappelijke factor is dus a polynoom en niet langer een monomiaal, zoals in het vorige geval.
Voorbeeld:
factor de uitdrukking .
Merk op dat de uitdrukking wordt gevormd door een som van verschillende termen en dat komt in sommige termen voor en in andere verschijnt het .
Laten we de uitdrukking herschrijven en deze termen samenvoegen:
Laten we de variabelen plaatsen Het is als bewijs:
Zie nu dat de term kan worden herschreven als , waaruit we ook het getal 2 als bewijs kunnen halen:
zoals de polynoom in beide termen voorkomt, kunnen we het nogmaals bewijzen:
Daarom, .
Als de uitdrukking een verschil is van twee kwadraten, kan deze worden geschreven als het product van de som van de basen en het verschil van de basen. Het is een van de opvallende producten:
Voorbeeld:
factor de uitdrukking .
Merk op dat deze uitdrukking herschreven kan worden als , dat wil zeggen, het is een verschil van twee vierkante termen, waarvan de bases 9 en 2x zijn.
Dus laten we de uitdrukking schrijven als het product van de som van de basen en het verschil van de basen:
Bij het ontbinden in factoren van de perfect kwadratische trinominaal gebruiken we ook de opmerkelijke producten en schrijven we de uitdrukking als het kwadraat van de som of het kwadraat van het verschil tussen twee termen:
Voorbeeld:
factor de uitdrukking .
Merk op dat de uitdrukking een perfecte vierkante drieterm is, as , Het is .
Dan kunnen we de uitdrukking ontbinden in factoren en schrijven als het kwadraat van de som van twee termen:
Als de uitdrukking een perfecte kubus is, ontbinden we factoren door de uitdrukking te schrijven als de somkubus of verschilkubus.
Voorbeeld:
factor de uitdrukking .
Deze uitdrukking is een perfecte kubus omdat:
Dan kunnen we de uitdrukking ontbinden in factoren en schrijven als de derde macht van de som van twee termen:
Als de uitdrukking een som of verschil is van twee kubussen, kunnen we als volgt ontbinden:
Voorbeeld:
factor de uitdrukking .
Merk op dat de uitdrukking kan worden geschreven als , dus het is een verschil van twee kubussen.
Dan kunnen we de uitdrukking als volgt ontbinden:
Mogelijk bent u ook geïnteresseerd: