O grafiek van een functie van de 2e graad, f (x) = ax² + bx + c, is een parabool en de coëfficiënten De, B Het is w zijn gerelateerd aan belangrijke kenmerken van de gelijkenis, zoals de holte.
tevens de hoekpunt coördinaten van een parabool worden berekend uit formules met de coëfficiënten en de waarde van de discriminerend delta.
Bekijk meer
NGO vindt 'onwaarschijnlijk' federaal doel van integraal onderwijs in het land
Negende economie ter wereld, Brazilië heeft een minderheid van burgers met...
Op zijn beurt is de discriminant ook een functie van de coëfficiënten en daaruit kunnen we bepalen of de 2e graads functie al dan niet wortels heeft en wat ze zijn, indien aanwezig.
Zoals je kunt zien, kunnen we uit de coëfficiënten de vorm van een parabool beter begrijpen. Om meer te begrijpen, zie a lijst met opgeloste oefeningen over de concaafheid van de parabool en de coëfficiënten van de 2e graads functie.
Vraag 1. Bepaal de coëfficiënten van elk van de volgende functies van de 2e graad en geef de concaafheid van de parabool.
a) f(x) = 8x² – 4x + 1
b) f (x) = 2x² + 3x + 5
c) f (x) = 4x² – 5
e) f(x) = -5x²
f) f (x) = x² – 1
Vraag 2. Bepaal uit de coëfficiënten van onderstaande kwadratische functies het snijpunt van de parabolen met de ordinatas:
a) f (x) = x² – 2x + 3
b) f (x) = -2x² + 5x
c) f (x) = -x² + 2
d) f (x) = 0,5x² + 3x – 1
Vraag 3. Bereken de waarde van de discriminant en identificeer of de parabolen de as van de abscis snijden.
a) y = -3x² – 2x + 5
b) y = 8x² – 2x + 2
c) y = 4x² – 4x + 1
Vraag 4. Bepaal de concaafheid en vertex van elk van de volgende parabolen:
a) y = x² + 2x + 1
b) y = x² – 1
c) y = -0,8x² -x + 1
Vraag 5. Bepaal de concaafheid van de parabool, het hoekpunt, de snijpunten met de assen en teken de volgende kwadratische functie uit:
f(x) = 2x² – 4x + 2
a) f(x) = 8x² – 4x + 1
Coëfficiënten: a = 8, b = -4 en c = 1
Concaviteit: naar boven, aangezien a > 0.
b) f (x) = 2x² + 3x + 5
Coëfficiënten: a = 2, b = 3 en c = 5
Concaviteit: naar boven, aangezien a > 0.
c) f (x) = -4x² – 5
Coëfficiënten: a = -4, b = 0 en c = -5
Concaviteit: naar beneden, omdat a < 0.
e) f(x) = -5x²
Coëfficiënten: a = -5, b = 0 en c = 0
Concaviteit: naar beneden, omdat a < 0.
f) f (x) = x² – 1
Coëfficiënten: a = 1, b = 0 en c = -1
Concaviteit: naar boven, aangezien a > 0.
a) f (x) = x² – 2x + 3
Coëfficiënten: a= 1, b = -2 en c = 3
Het snijpunt met de y-as wordt gegeven door f (0). Dit punt komt exact overeen met de coëfficiënt c van de kwadratische functie.
Snijpunt = c = 3
b) f (x) = -2x² + 5x
Coëfficiënten: a= -2, b = 5 en c = 0
Snijpunt = c = 0
c) f (x) = -x² + 2
Coëfficiënten: a= -1, b = 0 en c = 2
Snijpunt = c = 2
d) f (x) = 0,5x² + 3x – 1
Coëfficiënten: a= 0,5, b = 3 en c = -1
Snijpunt = c = -1
a) y = -3x² – 2x + 5
Coëfficiënten: a = -3, b = -2 en c = 5
discriminerend:
Aangezien de discriminant een waarde groter dan 0 heeft, snijdt de parabool de x-as op twee verschillende punten.
b) y = 8x² – 2x + 2
Coëfficiënten: a = 8, b = -2 en c = 2
discriminerend:
Aangezien de discriminant een waarde heeft kleiner dan 0, snijdt de parabool de x-as niet.
c) y = 4x² – 4x + 1
Coëfficiënten: a = 4, b = -4 en c = 1
discriminerend:
Aangezien de discriminant gelijk is aan 0, snijdt de parabool de x-as in één enkel punt.
a) y = x² + 2x + 1
Coëfficiënten: a= 1, b = 2 en c= 1
Concaviteit: omhoog, want a > 0
discriminerend:
hoekpunt:
V(-1.0)
b) y = x² – 1
Coëfficiënten: a= 1, b = 0 en c= -1
Concaviteit: omhoog, want a > 0
discriminerend:
hoekpunt:
V(0,-1)
c) y = -0,8x² -x + 1
Coëfficiënten: a= -0,8, b = -1 en c= 1
Concaviteit: naar beneden, omdat a < 0
discriminerend:
hoekpunt:
V(-0,63; 1,31)
f(x) = 2x² – 4x + 2
Coëfficiënten: a = 2, b = -4 en c = 2
Concaviteit: omhoog, want a > 0
hoekpunt:
V(1.0)
Onderscheppen met de y-as:
c = 2 ⇒ punt (0, 2)
Onderscheppen met de x-as:
Als , dan snijdt de parabool de x-as in een enkel punt. Dit punt komt overeen met de (gelijke) wortels van de vergelijking 2x² – 4x + 2, die kan worden bepaald door de formule van bhaskara:
Daarom snijdt de parabool de x-as in het punt (1,0).
Grafisch:
Mogelijk bent u ook geïnteresseerd: