O graf över en funktion av 2:a graden, f (x) = ax² + bx + c, är en parabel och koefficienterna De, B Det är w är relaterade till viktiga drag i liknelsen, såsom konkavitet.
Dessutom har vertexkoordinater av en parabel beräknas från formler som involverar koefficienterna och värdet av särskiljande delta.
se mer
NGO anser att det är "osannolikt" federalt mål med integrerad utbildning i landet
Nionde ekonomin på planeten, Brasilien har en minoritet av medborgare med...
I sin tur är diskriminanten också en funktion av koefficienterna och utifrån den kan vi identifiera om 2:a gradsfunktionen har rötter eller inte och vad de är, om några.
Som du kan se, från koefficienterna kan vi bättre förstå formen på en parabel. För att förstå mer, se a lista över lösta övningar om parabelns konkavitet och koefficienterna för 2:a gradens funktion.
Fråga 1. Bestäm koefficienterna för var och en av följande funktioner av 2:a graden och ange parabelns konkavitet.
a) f(x) = 8x² – 4x + 1
b) f (x) = 2x² + 3x + 5
c) f (x) = 4x² – 5
e) f(x) = -5x²
f) f (x) = x² – 1
Fråga 2. Från koefficienterna för de kvadratiska funktionerna nedan, bestäm skärningspunkten för parabolerna med ordinataaxeln:
a) f (x) = x² – 2x + 3
b) f (x) = -2x² + 5x
c) f (x) = -x² + 2
d) f (x) = 0,5x² + 3x – 1
Fråga 3. Beräkna värdet på diskriminanten och identifiera om parabolerna skär abskissans axel.
a) y = -3x² – 2x + 5
b) y = 8x² – 2x + 2
c) y = 4x² – 4x + 1
Fråga 4. Bestäm konkavitet och vertex för var och en av följande paraboler:
a) y = x² + 2x + 1
b) y = x² – 1
c) y = -0,8x² -x + 1
Fråga 5. Bestäm parabelns konkavitet, vertex, skärningspunkterna med axlarna och rita följande kvadratiska funktion:
f(x) = 2x² – 4x + 2
a) f(x) = 8x² – 4x + 1
Koefficienter: a = 8, b = -4 och c = 1
Konkavitet: uppåt, eftersom a > 0.
b) f (x) = 2x² + 3x + 5
Koefficienter: a = 2, b = 3 och c = 5
Konkavitet: uppåt, eftersom a > 0.
c) f (x) = -4x² – 5
Koefficienter: a = -4, b = 0 och c = -5
Konkavitet: ner, eftersom a < 0.
e) f(x) = -5x²
Koefficienter: a = -5, b = 0 och c = 0
Konkavitet: ner, eftersom a < 0.
f) f (x) = x² – 1
Koefficienter: a = 1, b = 0 och c = -1
Konkavitet: uppåt, eftersom a > 0.
a) f (x) = x² – 2x + 3
Koefficienter: a= 1, b = -2 och c = 3
Skärningspunkten med y-axeln ges av f (0). Denna punkt motsvarar exakt koefficienten c för den kvadratiska funktionen.
Skärningspunkt = c = 3
b) f (x) = -2x² + 5x
Koefficienter: a= -2, b = 5 och c = 0
Skärningspunkt = c = 0
c) f (x) = -x² + 2
Koefficienter: a= -1, b = 0 och c = 2
Skärningspunkt = c = 2
d) f (x) = 0,5x² + 3x – 1
Koefficienter: a= 0,5, b = 3 och c = -1
Skärningspunkt = c = -1
a) y = -3x² – 2x + 5
Koefficienter: a = -3, b = -2 och c = 5
Särskiljande:
Eftersom diskriminanten är ett värde större än 0, skär parabeln x-axeln i två olika punkter.
b) y = 8x² – 2x + 2
Koefficienter: a = 8, b = -2 och c = 2
Särskiljande:
Eftersom diskriminanten är ett värde mindre än 0, så skär parabeln inte x-axeln.
c) y = 4x² – 4x + 1
Koefficienter: a = 4, b = -4 och c = 1
Särskiljande:
Eftersom diskriminanten är lika med 0, skär parabeln x-axeln i en enda punkt.
a) y = x² + 2x + 1
Koefficienter: a= 1, b = 2 och c= 1
Konkavitet: upp, eftersom a > 0
Särskiljande:
Vertex:
V(-1,0)
b) y = x² – 1
Koefficienter: a= 1, b = 0 och c= -1
Konkavitet: upp, eftersom a > 0
Särskiljande:
Vertex:
V(0,-1)
c) y = -0,8x² -x + 1
Koefficienter: a= -0,8, b = -1 och c= 1
Konkavitet: ner, eftersom a < 0
Särskiljande:
Vertex:
V(-0,63; 1,31)
f(x) = 2x² – 4x + 2
Koefficienter: a = 2, b = -4 och c = 2
Konkavitet: upp, eftersom a > 0
Vertex:
V(1,0)
Skär med y-axeln:
c = 2 ⇒ prick (0, 2)
Skärning med x-axeln:
Som , då skär parabeln x-axeln i en enda punkt. Denna punkt motsvarar (lika) rötterna av ekvationen 2x² – 4x + 2, som kan bestämmas av bhaskaras formel:
Därför skär parabeln x-axeln i punkten (1,0).
Grafisk:
Du kanske också är intresserad: